Note on braking and stabilization laws for buoyant flows under a weak magnetic field

T. Alboussièrèa, D. Henryb,\ast, S. Kaddechec

aDepartment of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
bLaboratoire de Mécanique des Fluides et d’Acoustique, UMR-CNRS 5509, Ecole Centrale de Lyon/Université Claude Bernard - Lyon 1, ECL-BP 163, 69131 Ecully Cedex, France
cInstitut National des Sciences Appliquées et de Technologie, BP 676, 1080 Tunis Cedex, Tunisia

Received 24 April 2003; received in revised form 28 May 2003; accepted 16 June 2003
Communicated by T. Mullin

Abstract

We consider the effect of a constant magnetic field on buoyant flows generated by temperature gradients. We focus on the domain of weak magnetic fields, i.e., small values of the Hartmann number Ha, for which general scaling laws can be derived. Concerning the braking of these buoyant flows, it was found to scale at small Ha as even powers of Ha. Concerning the damping of the oscillations, it can be shown that the instability characteristics, critical threshold expressed through the critical Grashof number Gr_c, critical eigenvector, and critical pulsation also scale as even powers of Ha. In particular, this gives an initial MHD stabilization effect at small Ha of the form $Gr_c - Gr_{c_0} \sim Ha^2$ where Gr_{c_0} is the critical Grashof number at $Ha=0$. These findings have been illustrated by results obtained in the case of the flow in an infinite layer.

\copyright\ 2003 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.

\ast Corresponding author. Tel.: +33-4-72-18-61-70; fax: +33-4-78-64-71-45.
\eb address: henry@mecaflu.ec-lyon.fr (D. Henry).

0169-5983/$30.00 \copyright\ 2003 Published by The Japan Society of Fluid Mechanics and Elsevier B.V.
All rights reserved.
doi:10.1016/S0169-5983(03)00081-9