Effects of induced magnetic field and two-dimensionality of imposed magnetic field in MHD induction generator

Kazuyuki Ueno
Institute of Fluid Science, Tohoku UniversitySendai 980Japan

Shigeki Morioka
Department of Aeronautical Engineering, Kyoto UniversityKyoto 606Japan

Received 02-NOV-92

Inertia dominant laminar flow of liquid metal between two parallel insulator walls is investigated in the coordinate system moving with a traveling sine wave magnetic field. Flow and magnetic fields are represented in the form of asymptotic expansions for small parameters \(H^{-1} \), \(N^{1/2} \), \(Rm \), and \(\Lambda^{-1} \) (\(Ha \) is the averaged Hartmann number, \(N \) is the interaction parameter, \(Rm \) is the magnetic Reynolds number, \(\Lambda \) is the dimensionless wavelength). Non-periodic corrections to the flow velocity due to the effects of the induced magnetic field and the two-dimensionality of the imposed magnetic field have a biquadratic profile of \(O(R^2m) \) and a quadratic profile of \(O(\Lambda^{-2}) \), respectively. The multi-structure of the boundary layer is not affected by these effects. For the same pressure drop, the input power fractions due to these effects are proportional to \(R^2m \) and \(\Lambda^{-2} \), respectively. These fractions are wasted and expressed as part of the Ohmic power loss.

Copyright (c) 1998 Elsevier Science B.V. All rights reserved.